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Tasks Definition

* Generate images that meet the task
requirements, often with the given inputs

* ill-posed multi-modal problem

* probabilistic one-to-many mapping



Two Methods for Image Generation
Tasks

* Optimization-based

 Feed-forward network/Generator-based



Optimization-based

Use DNN features to define losses.
Use gradient descent to get optimal image.

easy, flexible
slow inference
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Generator-based/Generative model

Train a generator using specific losses

need large training data

most are fast in the inference time(exc.
PixelCNN)

adversarial training can be used

F(ml)



Different Losses

L2(mean square error)/L1 loss in image space
Perceptual loss/VGG loss/Alex loss

General adversarial loss

Conditional adversarial loss



L2(mean square error)/L1 loss

In Image Space
Ly(X.,Y)=106,(G(X).Y) =[GX) =Y.

low noise, smooth, but blurry
changes like translation is not well expressed

make average/median over possible answers

L1 loss a little bit less blurry



NVIDIA.

Pitfall of Euclidean distance
for image modeling

e Blue curve plots the Euclidean distance between a reference
image and its horizontal translation.

* Red curve is the Euclidean distance between ;’ and
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* Indeed, using the L2 loss comes from the
assumption that the data is drawn from a
Gaussian distribution, and works poorly with
multimodal distributions. (Mathieu et al. 2016)

* Per-pixel regression treats the output space as
“unstructured” in the sense that each output
pixel is considered conditionally independent
from all others given the input image(lsola et al.
2016)



Perceptual loss(VGG loss/Alex loss)

Lyear = Y IC(Go(x:)) = Clyol 3

e Capture high level features using a pre-trained
model like VGG or AlexNet, then measure the
distance in feature space

* Convolutional networks provide a feature
representation with desirable properties. They
are invariant to small smooth deformations, but
sensitive to perceptually important image
properties, for example sharp edges and
textures(Dosovitskiy et al. 2016)



* Lose fine details, produce artifacts not natural
or photo-realistic

* Since feature representations are typically
contractive, many images, including non-
natural ones, get mapped to the same feature
vector(Dosovitskiy et al. 2016)
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NVIDIA.

Why are GANs useful for computer
vision?

Hand-crafted features —%» Deep Networks

Generative
I_-Ian-d-craftec.l e Adversarial
objective function
Networks

Ming-Yu Liu et al. CVPR 2017 GAN Tutorial



* Why are generated samples blurry? Difficult to
hand-craft a good perceptual loss function

* Adversarial loss eliminates the need of hand-
crafting objective functions for various computer
vision problem.

* Forces the generated images to be
indistinguishable from real images. This is
“exactly” the objective that tasks aim to optimize.



Natural Image Manifold
MSE-based Solution

“pixel-wise average
——=m of possible solutions”

(Ledig et al. CVPR’17)



General adversarial loss

M Fyy -, (108 D(22)] + oy, llog(1 — D(E (1))

Ming-Yu Liu et al. CVPR 2017 GAN Tutorial



Constrain the output images on the
natural(answer) image manifold

Make results sharp and realistic
Denoise and get rid of artifacts

Need other losses to explicitly constrain the
input-output relationship

Adversarial loss is difficult to train and unstable.
MSE loss proved to be useful as it stabilizes and
accelerates training



Conditional Adversarial Loss

* Used for supervised image generation. Give
both input and output to the discriminator.

LCGAN(Ga D) :Ex,yrvpdam(x,y) [k)g D(Ia y)]+
E log(1 — D(x,G(z, 2))]

LBNPdata,(iF),Zsz (2:) [



Positive examples

Real or fake pair?

G tries to synthesize fake
images that fool D

D tries to identify the fakes

Negative examples

Real or fake pair?

Isola et al. 2016



* Not only make outputs sharp and natural, but
as close to correct answers as possible
corresponding to the input

* Actually model a joint distribution

 MSE also helps training



Generator Architecture

e (conv +) deconv (+ skip)

* multi-scale
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* (encoder+)decoder

* Skip connection to preserve the high
frequency information

e Kind of like attention

—_—

Image credit, Isola et al. 2016



LAPGAN: Multi-scale
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Result Evaluation

No good quality metrics now

PSNR/SSIM prefer MSE
Human evaluation: Amazon Mechanical Turk

-CN score: use pre-trained semantic
segmentation classifier to evaluate the
similarity of ground truth and generated
Image



Papers



Unsupervised representation learning with
deep convolutional generative adversarial
networks

DCGAN

Radford et al.
ICLR, 2016

arXiv:1511.06434



* Propose a class of architectures that make
training process stable
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Architecture guidelines for stable Deep Convolutional GANs

e Replace any pooling layers with strided convolutions (discriminator) and fractional-strided
convolutions (generator).

e Use batchnorm in both the generator and the discriminator.
e Remove fully connected hidden layers for deeper architectures.
e Use ReLU activation in generator for all layers except for the output, which uses Tanh.

e Use LeakyReLU activation in the discriminator for all layers.




e Use trained discriminator as unsupervised
feature extractor

Table 1: CIFAR-10 classification results using our pre-trained model. Our DCGAN is not pre-
trained on CIFAR-10, but on Imagenet-1k, and the features are used to classify CIFAR-10 images.

Model Accuracy | Accuracy (400 per class) | max # of features units
1 Layer K-means 80.6% 63.7% (£0.7%) 4800
3 Layer K-means Learned RF 82.0% 70.7% (£0.7%) 3200
View Invariant K-means 81.9% 72.6% (+0.7%) 6400
Exemplar CNN 84.3% 77.4% (£0.2%) 1024
DCGAN (ours) + L2-SVM 82.8% 73.8% (£+0.4%) 512




* |nvestigate the learned latent space

smiling neutral neutral
woman woman man

smiling man






The smooth transition shows that the model has
learned an interesting representation, not just
memorizes examples.



Image Translation



Generating Images with Perceptual Similarity
Metrics based on Deep Networks

DeePSIM

Dosovitskiy et al.
NIPS, 2016

arXiv:



 Sum up 3 kinds of losses when given a
supervised learning task and a training set of
input-target pairs {xi, yi}

L= )‘feat ‘Cfeat T )‘ad'v La.dv -+ )‘i'mg £'i’mg-



‘Cadv
1 <> D(G(x)

Figure 2: Schematic of our model. Black solid lines de-
note the forward pass. Dashed lines with arrows on both
ends are the losses. Thin dashed lines denote the flow of
gradients.
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Liiser = _ZlOg ‘Hog(l D (G9<Xi))):

Lody = — Z lOg D@(GQ(XZ))

 Adding a loss in the image space stabilize
adversarial training



Experimentl: Autoencoder with
DeePSIM Loss

Actually SE and L1
loss have lower
Euclidean
reconstruction
error, which shows
that Euclidean
error doesn’t mean
better result
quality.



SEloss | ¢;loss | Our-EXCNN | Our-AlexNet

34.6 £0.6 | 35.7£0.4 | 50.1+0.5 | 52.3+0.6

Table 4: Classification accuracy (in %) on STL with au-
toencoder features learned with different loss functions.



Experiment2: VAE with DeePSIM Loss

Z _EQ(3|-’171'.) log p(zi|2z) + Drr(q(z|zi)||p(2)),

* |f we assume that the decoder predicts a
Gaussian distribution at each pixel, then it(log

likelihood) reduces to squared Euclidean error
in the image space.

* Replace the first term with DeePSIM
e Just like VAE-GAN



and the proposed DeePSiM loss (top to bottom: AlexNet &
CONVS5, AlexNet FC6, VideoNet CONV)S).



Experiment3: Invert AlexNet with
DeePSIM Loss




Photo-Realistic Single Image Super-Resolution
Using a Generative Adversarial Network

SRGAN

Ledig et al.
ECCV, 2016

arXiv:



* Use VGG loss + general adv loss for the SR
problem

 Compare 4 kinds of experiement loss:
SRResNet(MSE loss)
SRResNet-VGG(VGG loss)
SRGAN-MSE(MES+adv)
SRGAN(VGG+adv)




Architecture

Generator Network B residual blocks
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SRResNet- SRGAN-
Set5 MSE VGG22 | MSE VGG22 VGG54
PSNR 32.05 30.51 30.64  29.84 29.40
SSIM  0.9019 0.8803 | 0.8701 0.8468  0.8472
MOS 3.37 3.46 3.77 3.78 3.58
Set14
PSNR 2849  27.19 26.92  26.44 26.02
SSIM  0.8184 0.7807 | 0.7611 0.7518  0.7397
MOS 2.98 3.15* 3.43 3.57 3.72*




bicubic SRResNet SRGAN original

(21.59dB/0.6423) (21.15dB/0.6868)




SRResNet SRGAN-MSE SRGAN-VGG22 SRGAN-VGG54 original HR image




Image-to-Image Translation with Conditional
Adversarial Networks

Pix2Pix
Isola et al.
CVPR, 2017

arXiv:



General purpose supervised image to image translation
Using conditional GAN

ECCTYAN (G" D) :Ew,yrvpdam(w,y) [log D(I’ y)}—'_
Bonpaata(@),zmp. () 108(1 = D(@, Gz, 2))]

Beneficial to mix the GAN objective with a more traditional
loss, and L1 encourages less blurring than L2

G* = arg ngn IIlDaXECGAN(G, D)+ A1 (G).

The generator simply learned to ignore the input noise(is an
important question left open for future)



Generator Architecture: Unet

e “Such a network requires

that all information flow —— —
pass through all the layers, ] 1
including the bottleneck. A | X ]
For many image translation l
problems, there is a great )
deal of low-level , T
information shared
between the input and 1
output, and it would be _
desirable to shuttle this I e R
information directly across

the net.”

Figure 3: Two choices for the architecture of the generator. The
“U-Net” [34] is an encoder-decoder with skip connections be-
tween mirrored layers in the encoder and decoder stacks.



Discriminator Architecture: PatchGAN

“Although L2/L1 losses fail to encourage high frequency crispness, in many
cases they nonetheless accurately capture the low frequencies. For
problems where this is the case, we do not need an entirely new

framework to enforce correctness at the low frequencies. L1 will already
do.

This motivates restricting the GAN discriminator to only model high-
frequency structure, relying on an L1 term to force low-frequency
correctness. In order to model high-frequencies, it is sufficient to restrict
our attention to the structure in local image patches. Therefore, we design
a discriminator architecture — which we term a PatchGAN — that only
penalizes structure at the scale of patches. This discriminator tries to
classify if each NxN patch in an image is real or fake. We run this
discriminator convolutionally across the image, averaging all responses to
provide the ultimate output of D.”



* “N can be much smaller than the full size of the image and
still produce high quality results. This is advantageous
because a smaller PatchGAN has fewer parameters, runs
faster, and can be applied on arbitrarily large images.

* Such a discriminator effectively models the image as a
Markov random field, assuming independence between
pixels separated by more than a patch diameter. This is the
common assumption in models of texture. Our PatchGAN
can therefore be understood as a form of texture/style
loss.”



Experiments

Different losses
Different architectures
Human evaluation
Segmentation task



Losses

Loss Per-pixel acc. Per-class acc. Class IOU
L1 0.44 0.14 0.10
GAN 0.22 0.05 0.01
cGAN 0.61 0.21 0.16
L1+GAN 0.64 0.19 0.15
L1+cGAN 0.63 0.21 0.16
Ground truth 0.80 0.26 0.21

Table 1: FCN-scores for different losses, evaluated on Cityscapes
labels<+photos.



Generator Architecture

L1+cGAN

Encoder-decoder

U-Net

Figure 5: Adding skip connections to an encoder-decoder to create
a “U-Net” results in much higher quality results.



Discriminator Architecture

16x16 70x70 256x256

Figure 6: Patch size variations. Uncertainty in the output manifests itself differently for different loss functions. Uncertain regions become
blurry and desaturated under L1. The 1x1 Pixel GAN encourages greater color diversity but has no effect on spatial statistics. The 16x16
PatchGAN creates locally sharp results, but also leads to tiling artifacts beyond the scale it can observe. The 70x70 PatchGAN forces
outputs that are sharp, even if incorrect, in both the spatial and spectral (coforfulness) dimensions. The full 256x256 ImageGAN produces
results that are visually similar to the 70x70 PatchGAN, but somewhat lower quality according to our FCN-score metric (Table 2). Please
see https://phillipi.github.io/pix2pix/ for additional examples.




Semantic Segmentation

Loss Per-pixel acc. Per-class acc. Class IOU
L1 0.86 0.42 0.35
cGAN 0.74 0.28 0.22
L1+cGAN 0.83 0.36 0.29

Table 5: Performance of photo—labels on cityscapes.

Inp1ut Ground truth L1 cGAN

Figure 10: Applying a conditional GAN to semantic segmenta-
tion. The cGAN produces sharp images that look at glance like

the ground truth, but in fact include many small, hallucinated ob-
jects.



* “Conditional GANs appear to be effective on
problems where the output is highly detailed
or photographic, as is common in image
processing and graphics tasks.

e For vision problems, the goal (i.e. predicting
output close to ground truth) may be less
ambiguous than graphics tasks, and
reconstruction losses like L1 are mostly
sufficient.”



Unpaired Image-to-Image Translation
using Cycle-Consistent Adversarial Networks

CycleGAN

Zhu et al.
arXiv:



* General purpose unsupervised image to image
translation

e Using cycle consistency constraint
* Achieve bi-direction translation



Paired | Unpaired
L i f

)

e getting paired dataset is difficult and expensive

* Assume there is some underlying relationship
between the domains — for example, that they
are two different renderings of the same
underlying world — and seek to learn that
relationship.



l

Dy

* General adv loss can’t constrain the input-
output relationship and results in mode
collapse



* General adv loss can’t constrain the input-
output relationship and results in mode
collapse

e Solution: cycle-consistency



X /‘\ R ~ Y - /\ -
F F
X Y| i | X Y| L
: cycle-consistency
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loss " /‘
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* Autoencoder view: AE with a meaningful
intermediate representation

* Dual learning view: DualGAN



Leye(Gy F) =Epnpga () [1F'(G(2)) — ||1]
FEymopia () IG(F(y)) — yll1].

L(G,F,Dx,Dy)=Lcax(G, Dy, X,Y)
+ Loan(F, Dx, Y, X)
+ Ay (G, F),



* Training tricks:
* LSGAN loss

LLSGAN(Ga DY) X7 Y) :Eprdam(y) [(DY (@/) _ 1)2]
+]Ex’\’pdata(33) [DY (G(l’))Q] )

* Using a history of generated images(Shrivastava
et al.)



Experiments

 Comparison with Other Approaches
* Analysis of the Loss Function
* Comparison with Neural Style



Comparison with Other Approaches

Figure 5: Different methods for mapping labels<+photos trained on cityscapes. From left to right: input, BiGAN [5, 6],
CoupledGAN [27], CycleGAN (ours), pix2pix [|&] trained on paired data, and ground truth.

 Unable to achieve compelling results with any other
approach



Analysis of the Loss Function

Figure 7: Different variants of our method for mapping labels<+photos trained on cityscapes. From left to right: input, cycle-
consistency loss alone, adversarial loss alone, GAN + forward cycle-consistency loss (F'(G(z)) ~ x), GAN + backward
cycle-consistency loss (G(F(y)) =~ y), CycleGAN (our full method), and ground truth. Both Cycle alone and GAN +
backward fail to produce images similar to the target domain. GAN alone and GAN + forward suffer from mode collapse,
producing identical label maps regardless of the input photo.



Comparison with Neural Style

Gatys et al. (lmage D Gatys et al. (image II)  Gatys et al. (collection) CycleGAN
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 “Handling more varied and extreme
transformations, especially geometric

changes, is an important problem for future
work.”

* “Integrating weak or semi-supervised data
may lead to substantially more powerful
translators.”



Video Prediction



Deep multi-scale video prediction beyond
mean square error

Mathieu et al.

ICLR 2016
arXiv:1511.05440



Task Definition

* Given fixed number of input frames, predict
fixed number of output frames



Architecture

r‘rr.rSrr

conv. ReLLU conv. ReLLU conv. ReLLU conv. ReLLU conv. Tanh

Multi-scale model tackles long-range dependency of pixels

Figure 2: Multi-scale architecture

f Network at

size k:
x1 n_ M G;c - e
k/280 Network at N B

. le
size k/2: m .
2 e k
X2 m )

/
k/2




Losses

 Conditional adv loss
L20(X,Y) = Y Lyee(Dy(Xe, Vi), 1) + Lige(Di(Xy, G (X)), 0

Lp loss to stabilize adv training

 GDL(Gradient Difference Loss): sharpness

Loar(X,Y) = Lgar(Y,Y) =
Z Yi;—Yio | —|Yij — Yi—LjHa + ||Yi o1 — Y | — Vi1 — YHHQ

i.j




Figure 4: Results on 3 video clips from Sportlm. Training: 4 inputs, 1 output. Second output
computed recursively.

U5 result

PP

/4 result GDL /4 result Adversarial result Adversarial+GDL result

/5 result

Input frames

/1 result GDL /4 result Adversarial result Adversarial+GDL result




Unsupervised Learning of Visual Structure
Using Predictive Generative Networks



Architecture & Loss

* Avariable number of frames as input
* Conditional adv + MSE

Predictive Generative Network Adversarial Discriminator



AL/
Preceding Frames ~ Truth MSE  y;qp Truth AL/MSE
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“Most notably, the AL/MSE model has learned
that faces contain conspicuous eyes and ears,
which are largely omitted by the MSE model.

When the AL/MSE model does make mistakes,
it’s often through generating faces that notably
look realistic, but seem slightly inconsistent with
the identity of the face in the preceding frames.
This can be seen in the second row in the right

panel of Figure 3.
Weighting AL higher exaggerates this effect.

One would hope that the discriminator would be
able to discern if the identity changed for the
proposed rotated view, but interestingly, even
humans struggle with this task.”



Table 2: Decoding accuracy (%) of latent variables from the LSTM hidden unit representation.

Model Angle | Speed | PC1 | PC2 | PC3 | PC4

PGN (MSE) 0.994 | 0.986 | 0.877 | 0.826 | 0.723 | 0.705
PGN (AL/MSE) 0.994 | 0.990 | 0.873 | 0.828 | 0.724 | 0.686
Autoencoder (MSE) | 0.943 | 0.927 | 0.834 | 0.772 | 0.655 | 0.635




Photo Editing



Generative Visual Manipulation
on the Natural Image Manifold

iGAN
Zhu et al.

ECCV 2016
arXiv:



* Common photo editing tools can achieve
impressive results in the hands of an expert,
but when these types of methods fail, they

produce results that look nothing like a real
Image.

* This paper proposes to constrain the edited
image on the natural image manifold by
model the manifold with GAN



Natural Image Manifold

* Train DCGAN in a set of natural images

 Then all the editing can operate in the latent
space

e After you have trained the GAN, you can start
editing.



Photo Editing Step1

* We refer the generator of DCGAN as G

* Find the latent code of the given image, via
combination of feed-forward network and
optimization-based generation

2* = argmin L£(G(2), z').
zEZ

* L corresponds to a weighted combination of raw
pixels and conv4 features extracted from
AlexNet



Original photos

Reconstruction
via Optimization

0.165 0.164 0.279 0.350 0.437 0.255 0.178 0.227
Y i::'v“l%s
Reconstruction [
via Network ——
0.198 0.190 0.382 0.302 0.251 0.248 0.263
r - ‘!)-"v‘%.
.
Reconstruction 4 ‘ ‘ ’,f
via Hybrid Method -
0.133 0.141 0.298 0.218 0.160 0.183




Step?2

* find new latent code satisfying user
requirements and is close to original latent
code via optimization-based generation

2 —argmm{ZHfg )) — vg||* + A - HZ—ZQH2-|-ED}.
e ) S —
) manifold

smoothness
data term
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(a) User constraints v, at different update steps

&

(b) Updated images according to user edits

i

~ NS aas™y
(c) Linear interpolation between G(zy) and G(z,)



Step3

e Edit transfer: apply the same adjustment to
the original image by optical flow method with
interpolation in the latent space between z0

and z1



User Edits

User Edits

G(zp) Linear interpolation between G(z,) and G(z;) G(z1)
Original Edit transfer sequence on the original photo Result
G(zy) Linear interpolation between G(z,) and G(z,)

°)

"R AR AR |

Original

Edit transfer sequence on the original photo

Result

¥

R RE |




User edits

Generated images

,
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Query

Nearest neighbor real photos

User edits

Generated images User edits Generated images

K}

Nearest neighbor real photos

A én S dh

Church

e Bl

Query Nearest neighbor real photos

.

Natural Outdoor

Church

e Start editing from a white board



Thanks!
Related Works for Further Reading



Gatys et al. A Neural Algorithm of Artistic Style

Johnson et al. Perceptual Losses for Real-Time
Style Transfer and Super-Resolution
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VAE-GAN
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